NIH investigates multidrug-resistant bacterium emerging in community settings

Wednesday, September 6, 2023

NIH investigates multidrug-resistant bacterium emerging in community settings

Image
Microscopic image of a human neutrophil
A human neutrophil (red) containing ingested Klebsiella pneumoniae (purple).
NIAID

New 鈥渉ypervirulent鈥 strains of the bacterium Klebsiella pneumoniae have emerged in healthy people in community settings, prompting a 最新麻豆视频 research group to investigate how the human immune system defends against infection. After exposing the strains to components of the human immune system in a laboratory 鈥渢est tube鈥 setting, scientists found that some strains were more likely to survive in blood and serum than others, and that neutrophils (white blood cells) are more likely to ingest and kill some strains than others. The study, published in mBio, was led by researchers at NIH鈥檚 最新麻豆视频 Institute of Allergy and Infectious Diseases (NIAID).

鈥淭his important study is among the first to investigate interaction of these emergent Klebsiella pneumoniae strains with components of human host defense,鈥 Acting NIAID Director Hugh Auchincloss, M.D., said. 鈥淭he work reflects the strength of NIAID鈥檚 Intramural Research Program. Having stable research teams with established collaborations allows investigators to draw on prior work and quickly inform peers about new, highly relevant public health topics.鈥

More than a century ago scientists identified K. pneumoniae as a cause of serious, often fatal, human infections, mostly in people already ill or with weakened immune systems and especially people in hospitals. Over a span of many decades, some strains developed resistance to multiple antibiotics, and became difficult to treat. This bacterium, often called classical Klebsiella pneumoniae (cKp), ranks as the third most common pathogen isolated from hospital bloodstream infections. Certain other Klebsiella pneumoniae strains cause severe infections in healthy people in community settings (outside of hospitals) even though they are not multidrug-resistant. They are known as hypervirulent Klebsiella pneumoniae, or hvKp. More recently, strains with both multidrug resistance and hypervirulence characteristics, so-called MDR hvKp, have emerged in both settings.

NIAID scientists have studied this general phenomenon before. In the early 2000s they observed鈥攁nd actively investigated鈥攙irulent strains of methicillin-resistant Staphylococcus aureus (MRSA) bacteria that had emerged in U.S. community settings and caused widespread infections in otherwise healthy people.

Now, the same NIAID research group at Rocky Mountain Laboratories in Hamilton, Montana, is investigating similar questions about the new Klebsiella strains, such as whether the microbes can evade human immune system defenses. Their findings were unexpected: the hvKp strains were more likely to survive in blood and serum than MDR hvKp strains. And neutrophils had ingested less than 5% of the hvKp strains, but more than 67% of the MDR hvKp strains鈥攎ost of which were killed.

The researchers also developed an antibody serum specifically designed to help neutrophils ingest and kill two selected hvKp and two selected MDR hvKp strains. The antiserum worked, though not uniformly in the hvKp strains. These findings suggest that a vaccine approach for prevention/treatment of infections is feasible.

Based on the findings, the researchers suggest that the potential severity of infection caused by MDR hvKp likely falls in between the classical and hypervirulent forms. The work also suggests that the widely used classification of K. pneumoniae into cKp or hvKp should be reconsidered.

The researchers also are exploring why MDR hvKp are more susceptible to human immune defenses than hvKp: Is this due to a change in surface structure caused by genetic mutation? Or perhaps because combining components of hypervirulence and antibiotic resistance reduces the bacterium's ability to replicate and survive in a competitive environment.

As a next step, the research team will determine the factors involved in MDR hvKp susceptibility to the body鈥檚 immune defenses using mouse infection models. Ultimately, this knowledge could inform treatment strategies to prevent or decrease disease severity. 

NIAID conducts and supports research鈥攁t NIH, throughout the United States, and worldwide鈥攖o study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the .

About the 最新麻豆视频 (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH鈥urning Discovery Into Health

F DeLeo et al. Interaction of multidrug-resistant hypervirulent Klebsiella pneumoniae with components of human innate host defense. mBio DOI: 10.1128/mbio.01949-23 (2023).

Institute/Center

Contact

Ken Pekoc

301-402-1663

Connect with Us