NIH researchers discover new gene involved in a toxic competition among yeast
Tuesday, February 21, 2023
NIH researchers discover new gene involved in a toxic competition among yeast
最新麻豆视频 researchers have identified a gene that makes yeast resistant to a lethal toxin, according to a new study published in the Proceedings of the 最新麻豆视频 Academy of Sciences. To study the evolution of toxin resistance, researchers at the 最新麻豆视频 Human Genome Research Institute (NHGRI), part of NIH, used yeast鈥 the kind commonly used for home baking 鈥 as a model organism. While researchers have long known about yeast鈥檚 remarkable ability to evade the effects of lethal toxins, the reason was a mystery until now.
鈥淭he intricacies of genomics that mediate these within-species battles are beautifully revealed by a study like this,鈥 said Charles Rotimi, Ph.D., scientific director of the Intramural Research Program at NHGRI. 鈥淲hile this is a yeast story, the mechanisms will surely influence studies on toxins and their effects on humans.鈥
Throughout human history, people have combatted various toxins made by other organisms, like spiders, plants, snakes and even the cholera or anthrax bacteria. Understanding toxin resistance in yeast could lead to new avenues for protection against toxins in humans.
鈥淲e鈥檙e interested in understanding how genomic variation leads to differences between individuals, so in this study, we鈥檙e looking at the most basic biological mechanisms underlying resistance to toxins in simple organisms, such as yeast,鈥 said Meru Sadhu, Ph.D., an investigator in the Genetic Disease Research Branch at NHGRI and senior author of the study. 鈥淎n important way that organisms vary is in how much they鈥檙e affected by toxins.鈥
Typically, toxins are used in conflicts between different species. However, these 鈥渒iller鈥 yeast are interesting and safe to study because the toxins only affect other yeast and do not harm humans, said Ilya Andreev, a former NHGRI postbaccalaureate trainee who led this study.
鈥淭here are very few examples of these within-species conflicts in nature, and our work has just scratched the surface of understanding the evolutionary dynamics of such conflicts,鈥 Andreev added.
In this current study, NHGRI researchers analyzed yeast infected with a virus that causes the yeast to secrete a lethal toxin called K28. The virus does not negatively affect the infected yeast. Instead, infected yeast are also resistant to the toxin鈥檚 effects.
These infected yeast secrete the K28 toxin to wipe out non-infected yeast growing nearby. This provides the infected yeast an evolutionary advantage in the competition for resources. However, some non-infected yeast grow despite the presence of the toxin.
To find out how these non-infected yeast resist the toxin, the researchers exposed different non-infected yeast to the K28 toxin. Those unaffected by the toxin were classified as highly resistant and the affected ones as sensitive. Then, the researchers compared the genomes of resistant versus sensitive yeast to identify which genes cause some yeast to be resistant.
Through this investigation, the researchers determined that the KTD1 gene provides resistance to the K28 toxin. 鈥淭his gene has never been studied before,鈥 said Sadhu. 鈥淚dentifying this gene is the first step to fully understanding what is happening on the molecular level.鈥
The researchers then attached a glowing protein to the KTD1 protein to track its position in the yeast cells. They found that the KTD1 protein resides on the surface of cellular compartments called vacuoles. Vacuoles serve many purposes in the cell, including isolating and breaking down harmful substances like toxins.
To inflict its toxic effects, the K28 toxin must move freely around the cell. The researchers hypothesized that the KTD1 protein may be involved in capturing the toxin in the vacuole.
A region of the KTD1 protein pokes into the center of the vacuole, where it could interact with trapped toxins. By analyzing the protein sequence, the researchers found that this region of the KTD1 protein is under strong evolutionary pressures.
These strong evolutionary pressures point to this region鈥檚 importance for the KTD1 protein鈥檚 function and highlight the competition between the toxin and the yeast. However, more research is needed to understand how this region of the KTD1 protein keeps K28 in check and how K28 may evolve in response.
NHGRI is one of the 27 institutes and centers at NIH. The NHGRI Division of Extramural Research supports grants for research and training and career development at sites nationwide. Additional information about NHGRI can be found at
About the 最新麻豆视频 (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.
NIH鈥urning Discovery Into Health庐
Institute/Center
Contact
301-402-0911